پیش‌بینی ورشکستگی مالی با استفاده از صورت جریان نقد: رهیافت شبکۀ عصبی مصنوعی

Authors

  • احمد گوگردچیان استادیار، گروه اقتصاد، دانشکدۀ علوم اداری و اقتصاد، دانشگاه اصفهان، ایران
  • سهیلا اسمعیلی کارشناسی ارشد، گروه مدیریت، دانشکدۀ علوم انسانی، دانشگاه آزاد اسلامی واحد نجف‌آباد، ایران
Abstract:

بحران مالی شرکت‌های بزرگ در دهۀ اخیر سبب گرایش اکثریت گروه‌های ذی‌نفع به مدل‌های پیش‌بینی ورشکستگی شده است. هدف اصلی این پژوهش ارزیابی محتوای اطلاعاتی نسبت‌های صورت جریان وجه نقد در تشخیص ورشکستگی شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران با استفاده از شبکۀ عصبی مصنوعی است. جامعۀ آماری این پژوهش شرکت‌های پذیرفته‌شده در بورس اوراق بهادار تهران در دورۀ زمانی از سال‌های 1384 تا 1392 است. برای این منظور 84 شرکت شامل 42 شرکت ورشکسته و 42 شرکت سالم انتخاب شدند. شبکۀ عصبی این پژوهش پرسپترون سه لایه است که با روش الگوریتم پس انتشار خطا آموزش دیده است. براساس نتایج پژوهش، مدل شبکۀ عصبی با نسبت جریان نقدی عملیاتی به بدهی‌های جاری، نسبت پوشش جریان نقدی عملیاتی به بهره، نسبت بازده نقدی دارایی‌ها، نسبت کیفیت سود و نسبت آنی بیشترین قدرت پیش‌بینی را نسبت به ورشکستگی شرکت‌ها در ایران دارد. همچنین، یافته‌ها نشان می‌دهند که دقت پیش‌بینی مدل برای سال ورشکستگی 99 درصد و در مجموع مراحل ورشکستگی در یک، دو و سه سال قبل از ورشکستگی به ترتیب با دقت 91، 85 و 70 درصد است.

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

کاربرد شبکۀ عصبی مصنوعی در پیش‌بینی جریان وجوه نقد آتی

وجوه‌‌ نقد از منابع مهم حیاتی هر واحد اقتصادی است و ایجاد توازن بین وجوه نقد در دسترس و نیازهای نقدی، مهم‌ترین عامل سلامت اقتصادی آن واحد می‌باشد. از آنجایی که وضعیت نقدینگی مبنای قضاوت بسیاری از اشخاص ذی‌نفع مانند سهامداران و سرمایه‌گذاران دربارة موقعیت واحد اقتصادی است. لذا، پیش‌بینی جریان وجه نقد آتی از اهمیت زیادی برخوردار است. افزون بر این، فراهم کردن مدل مناسب برای پیش‌بینی دقیق با حداقل ...

full text

پیش‌بینی ورشکستگی مالی شرکت‌های بورس اوراق بهادار تهران با استفاده از شبکه‎های عصبی مصنوعی

هدف اصلی این مقاله پیش‎بینی ورشکستگی مالی شرکت‎ها در بورس اوراق بهادار تهران به وسیله‎ی شبکه‎های عصبی مصنوعی است. مقادیر میانگین مربوط به نسبت‎های مالی کلیدی در پژوهش‎های صورت گرفته در پیشینه موضوع به‎عنوان ورودی شبکه‎های عصبی انتخاب شده‎اند. شبکه عصبی به‎کار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیده‎اند و شامل شبکه عصبی پیش‎خور سه لایه با ت...

full text

تولید مصنوعی جریان رودخانه با استفاده از شبکه‌های عصبی مصنوعی

در این مطالعه قابلیت مدل‎های شبکه عصبی مصنوعی در زمینه تولید مصنوعی جریان ارزیابی می‌شود. مدلی که برای تولید مصنوعی بکار رفته با ترکیب مدل شبکه عصبی و یک مؤلفه تصادفی با توزیع نرمال ایجاد شده است. در توسعه مدل از شبکه‌ عصبی چند لایه تغذیه پیشرفتی با الگوریتم آموزشی انتشار برگشتی خطا استفاده شده است. بر این اساس مدل، سری‌های بلند مدت و تا 300 سال جریان مصنوعی روزانه در رودخانه خرسان را تنها با ...

full text

پیش بینی ورشکستگی مالی شرکت های بورس اوراق بهادار تهران با استفاده از شبکه‎های عصبی مصنوعی

هدف اصلی این مقاله پیش‎بینی ورشکستگی مالی شرکت‎ها در بورس اوراق بهادار تهران به وسیله‎ی شبکه‎های عصبی مصنوعی است. مقادیر میانگین مربوط به نسبت‎های مالی کلیدی در پژوهش‎های صورت گرفته در پیشینه موضوع به‎عنوان ورودی شبکه‎های عصبی انتخاب شده‎اند. شبکه عصبی به‎کار گرفته شده در این مقاله از نوع پرسپترون چند لایه است که به روش الگوریتم پس انتشار خطا آموزش دیده‎اند و شامل شبکه عصبی پیش‎خور سه لایه با ت...

full text

طراحی شبکۀ جادۀ جنگلی با استفاده از شبکۀ عصبی مصنوعی و GIS

جاده‌های جنگلی به‌منظور ایجاد دسترسی به جنگل احداث می‌شوند و تأثیر زیربنایی در سازماندهی منطقه دارند. هدف این پژوهش، معرفی راهکاری هوشمند مبتنی بر شبکه‌های عصبی مصنوعی با تلفیق GIS برای طراحی شبکۀ جادۀ جنگلی با در نظر داشتن اصول و معیارهای فنی شبکۀ جادۀ جنگلی است. ابتدا معیارهای مؤثر با استفاده از روش دلفی شناسایی شد و وزن‌دهی آنها با استفاده از روش AHP، انجام گرفت. با تلفیق لایه‌های مختلف و وز...

full text

کاربرد شبکۀ عصبی مصنوعی در پیش بینی جریان وجوه نقد آتی

وجوه نقد از منابع مهم حیاتی هر واحد اقتصادی است و ایجاد توازن بین وجوه نقد در دسترس و نیازهای نقدی، مهم ترین عامل سلامت اقتصادی آن واحد می باشد. از آنجایی که وضعیت نقدینگی مبنای قضاوت بسیاری از اشخاص ذی نفع مانند سهامداران و سرمایه گذاران درباره موقعیت واحد اقتصادی است. لذا، پیش بینی جریان وجه نقد آتی از اهمیت زیادی برخوردار است. افزون بر این، فراهم کردن مدل مناسب برای پیش بینی دقیق با حداقل ان...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 15  issue 4

pages  879- 901

publication date 2017-12-22

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023